PII: S0960-894X(96)00528-8

EVALUATION OF FUROFURAN AS A P₂ LIGAND FOR SYMMETRY-BASED HIV PROTEASE INHIBITORS

Xiaoqi Chen,* Lin Li, Dale J. Kempf, Hing Sham, Norman E. Wideburg, Ayda Saldivar, Sudthida Vasavanonda, Kennan C. Marsh, Edith McDonald, and Daniel W. Norbeck

Pharmaceutical Products Division, Abbott Laboratories, D-47D, AP9A, 100 Abbott Park Road, Abbott Park, Illinois 60064

Abstract: The hexahydrofurofuranyloxy group was evaluated as a conformationally constrained P2 ligand for symmetry-based HIV protease inhibitors. A number of compounds showed nM level activity against HIV in MT4 cells and lower protein binding than the licensed protease inhibitor ritonavir. However, replacement of 5-thiazole of ritonavir with a furofuran caused a reduction of the bioavailability in vivo. Copyright © 1996 Elsevier Science Ltd

Inhibition of human immunodeficiency virus (HIV) protease is one of the most important and promising approaches for the therapeutic intervention of HIV infection. This approach to anti-HIV therapy has been validated with the recent FDA approval of three HIV protease inhibitors-saquinavir, ritonavir, and indinavir. A wide variety of classes of peptidomimetic inhibitors have been reported based upon HIV protease substrate sequences and on the three-dimensional structure of the C_2 -symmetric, homodimeric enzyme active site. There has also been rapid progress in the development of highly optimized P_2 ligands for hydroxyethylamine based HIV protease inhibitors. In particular, the hexahydrofurofuranyloxy group as a conformationally constrained P_2 ligand discovered by Ghosh is of great interest. Each of the two ether oxygen atoms of the furofuran hydrogen bonds to the NH groups of Asp_{29} and Asp_{30} , respectively, of the viral protease. These hydrogen bonding interactions were confirmed by X-ray studies. Due to the dimeric nature of HIV protease, it is reasonable to speculate that this type of conformationally constrained ligand will also be well suited for the C_2 -symmetry based HIV protease inhibitors core amines 1 and 2. As part of our continuing efforts, we prepared a number of HIV protease inhibitors containing furofuran as a P_2 ligand with the hope of improving the antiviral potency and reducing the high (99%) binding of human plasma proteins by ritonavir. Attached to the symmetry-based core diamine 2, the furofuran ligands provided inhibitors that displayed lower nM level activity against HIV in vitro.

Racemic 3-hydroxy-bistetrahydrofuran 4 was prepared from dihydrofuran through a four step reaction sequence as previously reported. ¹⁴ The two enantiomers of 4 were resolved by enzymatic hydrolysis of their acetates 5 by using LPL-80 (Amano). The enantiomeric purity of 3-hydroxy-(3R,3 α S,6 α R)-bis-tetrahydrofuran and 3-hydroxy-(3S,3 α R,6 α S)-bis-tetrahydrofuran 7 was (98% ee, $\alpha_D^{23^\circ}$ -12.1°, MeOH) and (97% ee, $\alpha_D^{23^\circ}$ +12.2°, MeOH), respectively. The enantiomeric bis-tetrahydrofuranes were converted to the corresponding activated carbonates 8 and 9 by reacting with *p*-nitrophenol chloroformate and N-methyl morpholine (Scheme I).

2848 X. CHEN et al.

Scheme I. Synthesis of activated furofuran ligands

Scheme II. Synthesis furofuran containing HIV protease inhibitors.

The activated carbonates were heated with the Boc protected diamine core 2^{15} to furnish the key intermediate 10. After removal of the Boc protecting group of 10 under acidic conditions, treatment with another equivalent of 8 or 9, or standard peptide coupling to substituted valines provided the desired inhibitors (Scheme II). All final compounds showed satisfactory purity by ^{1}H NMR and mass spectral analysis. We first studied the stereochemical preference of the furofuran ligands in the context of C_2 symmetry based HIV protease inhibitors. The IC₅₀ values for analogs A and B against HIV protease and the anti-HIV activity (EC₅₀) and cytotoxicity (CCIC₅₀) of each inhibitor in MT4 cells using a cytopathicity assay were measured according to reported

methods. We also measured the EC_{50} in MT4 cells in the presence of 50% human serum as an empirical estimate of the effect of protein binding on the activity of the inhibitors. The results are shown in Table I and II, respectively. As a result of unsymmetric binding of the core diamine 2 to the active site, 18 different binding affinities with HIV protease were observed depending upon the proximal or distal relationship of the furofuran to the hydroxyl group. In general, the 3R-furofuran was found to be a better P_2 ligand than the 3S-furofuran in this series. This was especially apparent when the furofuran occupied a position distal to the hydroxyl group. However, compounds with the 3S-furofuran in the position proximal to the hydroxyl group also displayed good

Table I Inhibition of HIV protease by furofuran containing analogs of A

No.	A ₁	A ₂	Inhib. ^a % (nM)	EC ₅₀ (μΜ)	EC ₅₀ b (μΜ)	CCIC ₅₀ (µM)
Ritonavir			78(0.5)	0.07	0.81	56
11	R, S-FF	t-Bu	49(0.5)	0.2	0.2	56
10	R-FF	t-Bu	63(0.5)	0.18	nd	69
12	S-FF	t-Bu	45(0.5)	1.043	4.727	>100
13	R, S-FF	R,S-FF	53(0.5)	0.071	0.077	>100
14	S-FF	S-FF	50(4)	3.681	4.183	>100
15	S-FF	R-FF	73(0.5)	0.107	0.197	>100
16	R-FF	R-FF	64(0.5)	0.034	0.115	>100
17	R-FF	S-FF	39(0.5)	0.891	1.924	>100
18	R, S-FF	5-Thz	43(0.5)	0.502	1.204	>100
19	5-Thz	R, S-FF	52(0.5)	0.428	0.774	>100
20	R-FF	5-Thz	53(0.5)	0.140	0.290	>100

a: pencentage of inhibition of HIV protease was measured in the presence of inhibitor at indicated consentration. b: antiviral activity was tested in the presence of 50% human serum. nd = no data; FF = hexahydrofurofuranyl; Thz = Thiazolyl.

antiviral activities. These observations are consistent with the unsymmetric mode of binding previously observed in the crystal structure of a derivative of core diamine 2 bond to HIV protease. Inhibitors with mixtures of 3R, 3S-furofuran retained most of the antiviral activities against HIV virus in MT4 cells in comparison to their corresponding 3R-furofuran stereoisomers.

Compounds 31 and 32 containing furofurans as P2 ligands showed significantly higher binding affinities

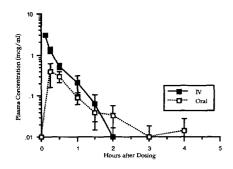
2850 X. CHEN *et al.*

to HIV protease than the simple tetrahydrofuran 29, which suggests that both of the oxygen atoms of the furofuran are participating in the putative hydrogen bonds with Asp₂₉ and Asp₃₀ of the viral protein.¹¹ Replacement of L-valine with D-valine caused a slight lose of antiviral activity (21 vs 22; 23 vs 24 and 25 vs 26). Compounds with larger P₃ ligands (21-24 and 29-32) showed improved antiviral activities over those with smaller groups. In parallel to the SAR studies of ritonavir development, ¹⁹ isopropyl substituted 4-thiazoles were superior to methyl substituted 4-thiazoles and 5-thiazoles. This observation is consistent with the previously

Table II Inhibition of HIV protease by furofuran containing analogs of B

No.	R	Thz	Z	Val	X	Y	FF	Inhib.%a	EC ₅₀	EC ₅₀ b	CCIC ₅₀
140.	K	I IIZ	L	Vai	А	1	FF	(0.5nM)	£C50 (μ M)	(μ M)	(μ M)
21	i-Pr	4	NMe	L	Н	ОН	R,S	52	0.009	0.14	56
22	i-Pr	4	NMe	D	Н	ОН	R,S	66	0.05	0.43	56
23	i-Pr	4	o	L	Н	ОН	R,S	83	0.01	0.137	>100
24	i-Pr	4	О	D	Н	ОН	R,S	66	0.03	0.33	66
25	Н	5	О	L	Н	ОН	R	80	0.07	0.233	>100
26	Н	5	О	D	Н	ОН	R	42	0.27	1.066	>100
27	Н	5	NMe	L	Н	ОН	R	56	0.45	0.67	>100
28	Н	5	NMe	D	Н	ОН	R	72	0.37	1.3	>100
29	i-Pr	4	NMe	L	Н	OH	S-THF	68	0.03	0.435	56
30	i-Pr	4	NMe	L	ОН	Н	R	74	0.03	0.419	56
31	i-Pr	4	NMe	L	H	ОН	R	83	0.01	0.116	>100
32	i-Pr	4	NMe	L	Н	ОН	S	80	0.01	0.239	47
33	Me	4	ММе	L	Н	OH	R,S	69	0.07	0.166	>100
34	Me	4	NMe	L	Н	ОН	R	74	0.04	0.56	>100
35	Me	4	NMe	L	Н	ОН	s	82	0.06	0.216	>100

a: pencentage of inhibition of HIV protease was measured in the presence of inhibitor at indicated consentration. b: antiviral activity was tested in the presence of 50% human serum.


FF = Furofuranyl; Thz = Thiazolyl; S-THF = (S)-3-Tetrahydrofuranyl; Val = Valinyl.

observed the hydrophobic interaction between the Val_{82} of HIV protease and the isopropyl substituent on the P_3 thiazole group.¹³ The N-methyl urea linkage¹² between the P_2 and P_3 ligand produced slightly better antiviral activities than a carbamate linkage. However, this trend was not observed when D-valine is used as a P_2 ligand instead of L-valine (22 vs 24 and 26 vs 28).

Compound 13 displayed greater antiviral potency than ritonavir. However, the aqueous solubility of 13 was very low, and erratic results were observed when a suspension of 13 was dosed orally in rats. Compound 20 was twofold more active than ritonavir in MT4 cells in the presence of 50% of human serum, while it has a lower molecular weight than ritonavir. At a dose of 10 mg/kg, compound 20 exhibited 41% oral bioavailability in rat and a peak plasma level of 770 nM, in excess of its in vitro antiviral EC₅₀ (290nM) in the presence of 50% human serum (Figure I). The small effect of human serum on these compounds is notable, and suggests that the incorporation of polar groups, in this case the furofuran and thiazole, significantly diminishes the protein binding.

Figure I Mean (±SEM) Plasma Concentration of 21 after a 5 (IV) or 10 (oral) mg/kg Dose in Rats

Figure II Mean (±SEM) Plasma Concentration of 20 after a 5 (IV) or 10 (oral) mg/kg Dose in Rats

Livery Oreal Concentration (mcg/ml)

Compound 21: 5 mg/kg IV dose

Rat#	t _{1/2} (H)	Vc L/kg	AUC(0-8h) μg•h/mL	
1	0.24	0.5	1.413	
2	0.67	0.9	1.344	
Mean	0.35	0.7	1 378	

Compound 20: 5 mg/kg IV dose

Rat#	t _{1/2} (H)	Vc L/kg	AUC(0-8h) mcg•h/mL
1	1.60	2.0	2.231
2	0.44	1.4	2.361
Mean	0.69	1.7	2.296

Compound 21: 10 mg/kg Oral dose

Rat#	C _{max} μg/mL	T _{max} (H)	AUC(0-8h) μg•h/mL	F %
3	0.359	0.5	0.514	18.7
4	0.838	0.25	0.202	7.3
5	0.128	0.5	0.210	7.6
Mean	0.442	0.42	0.309	11.2

Rat#	C _{max} μg/mL	T _{max} (H)	AUC(0-8h) μg•h/mL	F %
3	0.717	0.5	1.416	30.8
4	2.264	0.5	3.29	71.7
5	0.381	0.5	0.0951	20.7
Mean	1.121	0.5	1.886	41.1

However, further improvement in the potency and pharmacokinetic properties of these molecules is required to maintain suppression of HIV replication in vivo. Compound 21 demonstrated a five fold increase in antiviral activity in MT4 cells over ritonavir in the presence of 50% human serum. Unfortunately, a 10 mg/kg dose of compound 21 in rat achieved a calculated oral bioavailability of only 11.2%. Preliminary investigation of the hepatic metabolism of compound 21 in rat liver microsomes revealed that this compound is degraded an order of magnitude faster than ritonavir. Elucidation of the metabolic mode of the degradation of 21 will guide the future

2852 X. CHEN et al.

direction of the structural modifications to this molecule.

In summary, we have incorporated conformationally constrained furofurans as a P_2 ligands in several novel C_2 -symmetry based HIV protease inhibitors. Some of these compounds were potent HIV protease inhibitors and highly active in blocking the cytopathic affects of HIV in an MT4 cell culture assay and compound 20 showed 41% bioavailability in rats. Additional investigations will be required to further improve the pharmacokinetic profile of these compounds prior to clinical development.

ACKNOWLEDGMENT:

The authors thank Dr. John Dennison for the results of the *in* vitro hepatic metabolism studies in rat liver microcosms and Dr. Fariborz Mohamadi for helpful discussions.

REFERENCES:

- 1. O'Brien, W. A.; Hartigan, P. M.; Martin, D.; Esiinhart, J.; Hill, A.; Benoit, S.; Rubin, M.; Simberkoff, M. S.; Hamilton, J. D. N. Engl. J. Med. 1996, 334, 426.
- 2. Cohen, J. Science 1996, 271, 755.
- 3. Kempf, D. J.; Sham, H. L. Curr. Pharm. Design 1996, 2, 225. and references therein.
- 4. Ghosh, A. K.; Thompson, W. J.; McKee, S. P.; Duong, T. T.; Lyle, T. A.; Chen, J. C.; Darke, P. L.; Zugay, J. A.; Emini, E. A.; Schleif, W. A.; Huff, J. R.; Anderson, P. S. J. Med. Chem. 1993, 36, 292.
- 5. Ghosh, A. K.; Thompson, W. J.; Lee, H. Y.; McKee, S. P.; Munson, P. M.; Duong, T. T.; Darke, P. L.; Zugay, J. A.; Emini, E. A.; Schleif, W. A.; Huff, J. R.; Anderson, P. S. J. Med. Chem. 1993, 36, 924.
- 6. Ghosh, A. K.; Thompson, W. J.; Holloway, M. K.; McKee, S. P.; Duong, T. T.; Lee, H. Y.; Munson, P. M.; Smith, A. M.; Wai, J. M.; Darke, P. L.; Zugay, J. A.; Emini, E. A.; Schleif, W. A.; Huff, J. R.; Anderson, P. S. J. Med. Chem. 1993, 36, 2300.
- 7. Ghosh, A. K.; Lee, H. Y.; Thompson, W. J.; Culberson, C.; Holloway, M. K.; McKee, S. P.; Munson, P. M.; Duong, T. T.; Smith, A. M.; Darke, P. L.; Zugay, J. A.; Emini, E. A.; Schleif, W. A.; Huff, J. R.; Anderson, P. S. J. Med. Chem. 1994, 37, 1177.
- 8. Ghosh, A. K.; Thompson, W. J.; Munson, P. M.; Liu, W.; Huff, J. R. Bioorg. Med. Chem. Lett. 1995, 5, 83.
- 9. Thompson, W. J.; Ghosh, A. K.; Holloway, M. K.; Lee, H. Y.; Munson, P. M.; Schwering, J. E.; Wai, J.; Darke, P. L.; Zugay, J.; Emini, E. A.; Schleif, W. A.; Huff, J. R.; Anderson, P. S. J. Am. Chem. Soc. 1993, 115, 801
- 10. Kalish, V. J.; Tatlock, J. H.; Davies, J. F., II; Kaldor, S. W.; Dressman, B. A.; Reich, S.; Pino, M.; Nyugen, D.; Appelt, K.; Musick, L.; Wu, B.-W. Bioorg. Med. Chem. Lett. 1995, 5, 727.
- 11. Ghosh, A. K.; Thompson, W. J.; Fitzgerald, P. M. D.; Culberson, J. C.; Axel, M. G.; McKee, S. P.; Huff, J. R.; Anderson, P. S. J. Med. Chem. 1994, 37, 2506.
- 12. Kempf, D. J.; Codacovi, L.; Wang, X. C.; Kohlbrenner, W. E.; Wideburg, N. E.; Saldivar, A.; Vasavanonda, S.; Marsh, K. C.; Bryant, P.; Sham, H. L.; Green, B. E.; Betebenner, D. A.; Erickson, J.; Norbeck, D. W. J. Med. Chem. 1993, 36, 320.
- 13. Kempf, D. J.; Marsh, K. C.; Denissen, J. F.; McDonald, E.; Vasavanonda, S.; Flentge, C. A.; Green, B. E.; Fino, L.; Park, C. H.; Kong, X.-P.; Wideburg, N. E.; Saldivar, A.; Ruiz, L.; Kati, W. M.; Sham, H. L.; Robins, T.; Stewart, K. D.; Hsu, A.; Plattner, J. J.; Leonard, J. M.; Norbeck, D. W. *Proc. Natl. Acad. Sci. USA* 1995, 92, 2484.
- 14. Ghosh, A. K.; Chen, Y. Tetrahedron Lett. 1995, 36, 505.
- 15. Stuk, T. L.; Haight, A. R.; Scarpetti, D.; Allen, M. S.; Menzia, J. A.; Robbins, T. A.; Parekh, S. I.; Langridge, D. C.; Tien, J.-H. J.; Pariza, R. J.; Kerdesky, F. A. J. J. Org. Chem. 1994, 59, 4040.
- 16. Kempf, D. J.; Marsh, K. C.; Paul, D. A.; Knigge, M. F.; Norbeck, D. W.; Kohlbrenner, W. E.; Codacovi, L.; Vasavanonda, S.; Bryant, P.; Wang, X. C.; Wideburg, N. E.; Clement, J. J.; Plattner, J. J.; Erickson, J. Antimicrob. Agents Chemother. 1991, 35, 2209.
- 17. Molla, A.; Vasavanonda, S.; Denissen, J.; Kumar, B.; Grabowski, B.; Sham, H.; Kohlbrenner, W.; Norbeck, D.; Plattner, J.; Kempf, D. 4th Conference on Retroviruses and Opportunistic Infections Summitted 18. Hosur, M. V.; Bhat, T. N.; Kempf, D. J.; Baldwin, E. T.; Liu, B.; Gulnik, S.; Wideburg, N. E.; Norbeck, D. W.; Appelt, K.; Erickson, J. W. J. Am. Chem. Soc. 1994, 116, 847.
- 19. Kempf, D.; Molla, A.; Marsh, K.; Park, C.; Rodrigues, D.; Korneyeva, M.; Vasavanonda, S.; McDonald, E.; Flentge, C.; Nienaber, V.; Wideburg, N.; Saldivar, A.; Cooper, A.; Stewart, K.; Norbeck, D. manuscript in preparation.